NSTRUMENTS Data sheet acquired from Harris Semiconductor SCHS065

EXAS

CMOS Dual Monostable Multivibrator

High-Voltage Types (20-Volt Rating)

CD4098B dual monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed-voltage timing application.

An external resistor $(R\chi)$ and an external capacitor $(C\chi)$ control the timing for the circuit. Adjustment of RX and CX provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of Rx and Cχ.

Leading-edge-triggering (+TR) and trailing-edge-triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to VSS. An unused -TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the CD4098B is not used, its RESET should be tied to VSS. See Table I.

In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, $\overline{\mathbf{Q}}$ is connected to -TR when leading-edge triggering (+TR) is used or Q is connected to +TR when trailing-edge triggering (-TR) is used.

The time period (T) for this multivibrator can be approximated by: $T_X = \frac{1}{2}R_X C_X$ for $C_X \ge$ 0.01 µF. Time periods as a function of Rx for values of CX and VDD are given in Fig. 8. Values of T vary from unit to unit and as a function of voltage, temperature, and RXCX.

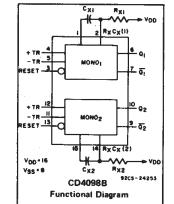
The minimum value of external resistance, R_X , is 5 k Ω . The maximum value of external capacitance, C_X, is 100 μ F. Fig. 9 shows time periods as a function of CX for values of RX and VDD

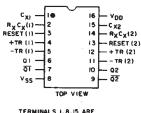
The output pulse width has variations of ±2.5% typically, over the temperature range of -55°C to 125°C for Cx=1000 pF and $R_{\chi}=100 k\Omega$.

For power supply variations of ±5%, the output pulse width has variations of ±0.5% typically, for VDD=10 V and 15 V and ±1% typically, for VDD=5 V at CX=1000 pF and $R_{X}=5 k\Omega$.

These types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic package (E suffix), and in chip form (H suffix).

The CD4098B is similar to type MC14528.


Features:


- Retriggerable/resettable capability
- Trigger and reset propagation delays independent of R_X, C_X
- Triggering from leading or trailing edge
- Q and Q buffered outputs available
- Separate resets
- Wide range of output-pulse widths
- 100% tested for maximum quiescent current at 20 V
- Maximum input current of 1 μ A at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range): 1 V at V_{DD} = 5 V 2 V at V_{DD} =10 V 2.5 V at V_{DD} =15 V 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Meets all requirements of JEDEC Tentative Standard No. 13B,"Standard Specifications for Description of 'B' Series CMOS Devices."

MAXIMUM RATINGS, Absolute-Maximum Values:

Applications:

- Pulse delay and timing
- Pulse shaping
- Astable multivibrator

TERMINALS 1,8,15 ARE ELECTRICALLY CONNECTED INTERNALLY 92CS-2484881

TERMINAL ASSIGNMENT

DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For $T_A = -55^{\circ}C$ to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
ОРЕRATING-ТЕМРЕRATURE RANGE (Т _А)55°С ю +125°С
STORAGE TEMPERATURE RANGE (Tsig)
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	V _{DD}	LIN			
CHARACTERISTIC	V	MIN	MAX.	UNITS	
Supply Voltage Range (For T _A = Full Package-Temperature Range)	-	3	18	• v	
Trigger Pulse Width t _W (TR)	5 10 15	140 60 40		ns	
Reset Pulse Width $t_W(R)$ (This is a function of C_X)		Si Dynami Chart Fig.	· · · · · · · · · · · · · · · · · · ·		
Trigger Rise or Fall Time t _r (TR), t _f (TR)	5 - 15	-	100	μs	

CD4098B Types

			TABLE								RATURE (TA)+ 25 °C
CD	4098B FU	NCTION	AL TER	MINAL	ONNEC	TIONS					V = L3 = 10 B = 2 ± 0 = 6 ± 4 ± 5 ± ± 5 ± 5 ± V = B = 7 = 0 = 2 ± 0 = 2 = 0 = 2 ± 0 = 2 ± 0 = 1 = 1 4 = B = 6 ± ± ± ± 1 = 1 = 1 = 2 = 0 = 2 ± 1 = 1 V = D = 2 = 0 = 2 = 2 = 1 = 1 = 1 = 2 = 2 = 2 = 1 = 1
FUNCTION	V _{DD} TO TERM. NO.		V _{SS} TO TERM. NO.		INPUT PULSE TO TERM. NO.		OTHER CONNECTIONS		RRENT (I _O	25	ATE-TO-SOURCE VOLTAGE (VGS
	MONO	MONO2	MONO	MONO2	MONO	MONO2	MONO	MONO2	NK) CN	20	
Leading-Edge Trigger/ Retriggerable	3, 5	11, 13			4	12			OUTPUT LOW IS	15 10 5	
Leading-Edge Trigger/ Non-retriggerable	3	13	:		4	12	5-7	11.9			To-source voltage (VDS)-v
Trailing-Edge Trigger/ Retriggerable	3	13	4	12	5	11			· ·		
Trailing-Edge Trigger/ Non-retriggerable	3	13			5	11	4-6	12-10	17 (I _{Γu}) – mÅ	5 ¹⁵	GATE-TO-SOURCE VOLTAGE
Unused Section	5	11	3, 4	12, 13			1	1	URREN		
TES: 1. A RETRIGGERABLE (VIBRATOR HAS AN C WIDTH WHICH IS EXT TIME PERIOD (T_X) AF OF THE LAST TRIGGE The minimum tim	OUTPUT PUL ENDED ONE TER APPLIC ER PULSE.	SE FULL ATION	MULTIVIE T _X REFEE CATION C	ETRIGGERA BRATOR HA RENCED FR DF THE FIR	AS A TIME IOM THE A ST TRIGGE	PERIOD PPLI- ER PULSE.	, 	<u> </u>	OUTPUT LOW (SIMK) C	7.5 5 2.5 0 0 5	

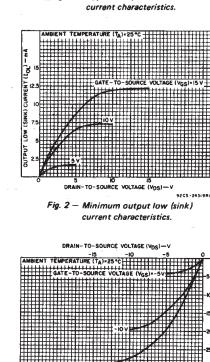
TABLE I

The minimum time between retriggering edges (or trigger and retrigger edges) is 40 per cent of (T_X) .

3(13) RESET

1 (15) O

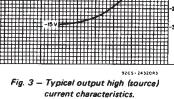
80

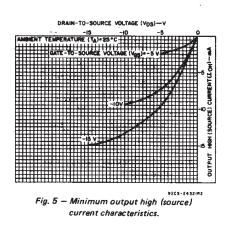

16 ()

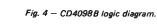
NOTE: SCHEMATIC SHOWN IS 1/2 OF TOTAL PACKAGE, TWO SETS OF TERMINAL NUMBERS ARE SHOWN. TERMINAL S I, B, IS ARE ELECTRICALLY CONNECTED INTERNALLY.

-Tx

NON-RETRIGGERABLE MODE PULSE WIDTH (+TR MODE)




9203-243(883


OUTPUT

3

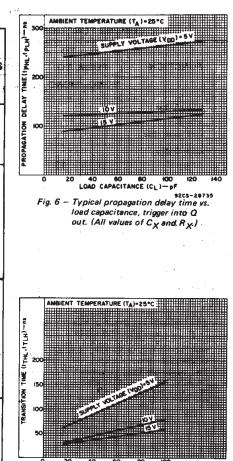
COMMERCIAL CMOS HIGH VOLTAGE ICs

R R2

RXCX Q 2(14)

0 -Ö 6 (10)

8 -07(9)


NALL INPUTS ARE PROTECTED BY CMOS PROTECTION NETWORK 92CM - 27628RI

3-227

STATIC ELECTRICAL CHARACTERISTICS

--

CHARAC- TERISTIC	CON	DITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)							UNITS
i chiane	Vo	VIN	V _{DD}			1	- 11 T				
· .	(V)	(V)	(V)	55	-40	+85	+125	Min.	Typ.	Max.	5 Sec. 1
Quiescent	_	0,5	5	1	1	30	30	_	0.02	1	
Device		0,10	10	2	2	60	60		0.02	2	1.
Current	-	0,15	15	4	4	120	120	-	0.02	4	μA
IDD Max.	-	0,20	20	20	20	600	600	-	0.04	20	1
Output Low						1				t · · ·	
(Sink)	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
Current,	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	1 .
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8		
Output High	4.6	0,5	5	0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	· _	
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Volt-					L			1			-
age:		0,5	5		0.0)5		_	0	0.05	
Low-Level,	-	0,10	10		0.0)5		_	0	0.05	n
VOL Max.	-	0,15	15		0.0	95		-	0	0.05	
Output Volt-						·····					V
age:		0,5	5		4.9	15		4.95	5	· -	· · ·
High-Level,	_	0,10	10		9.9	5		9.95	10	- 1	
VOH Min.	-	0,15	15		14.	95		14.95	. 15	-	
Input Low	0.5,4.5	_	5		1.	5				1.5	
Voltage,	1,9		10		3			_	_	3	
V _{IL} Max.	1.5,13.5	-	15		4			-	-	4	
Input High	0.5,4.5		-5	· · ·	3.9	5		3.5	_	_	V
Voltage,	1,9	-	10		7			7	_	-	
V _{IH} Min.	1.5,13.5		15		- 11			11	-	_	
Input					Т						
Current,		0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μA
I _{IN} Max.											
Output	÷										
Leakage	0,18	0,18	18	±0.4	±0.4	±12	±12	-]	±10 ⁴	±0.4	μΑ
IOUT Max.	•		·								

LOAD CAPACITANCE $(c_L) - \rho f$ Fig. 7 – Transition time vs. load capacitance for $R_{\chi} = 5 k \Omega \cdot 10000 k \Omega$ and $C_{\chi} = 15 p F \cdot 10000 p F$.

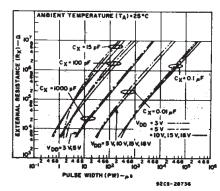


Fig. 8 – Typical external resistance vs. pulse width.

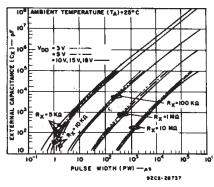


Fig. 9 – Typical external capacitance vs. pulse width.

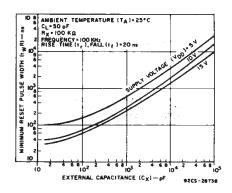


Fig. 10 – Typical minimum reset pulse width vs. external capacitance.

.

DYNAMIC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$; Input $t_r, t_f=20 \text{ ns}$, $C_L=50 \text{ pF}$, $R_L=200 \text{ k}\Omega$

CHARACTERISTIC	TEST	CONDITI	LIM	UNITS		
CHARACTERISTIC	$R_X (k\Omega) = C_X (pF)$		V _{DD} (V)	Тур.	Max.	
Trigger Propagation Delay Time	5 to		5	250	500	
+TR, –TR to Q, Q	10,000	≥15	10	125	250	ns
tPHL, tPLH	10,000		15	100	200	
Minimum Trigger Pulse Width,	5 to		5	70	140	
• •	10,000	≥15	10	30	60	ns
^t WH ^{, t} WL	10,000		15	20	40	
Transition Time,	5 to		5	100	200	
^t TLH	10,000	≥15	10	50	100	
	10,000		15	40	80	
	5 to	15 to	5	100	200	
	10,000	10,000	10	50	100	
			15	40	80	
	5 to	0.01 μF	5	150	300	ns
^t THL	10,000	to	10	75	150	
· · ·		0.1 μF	15	65	130	[
	5 to	0.1 μF	5	250	500	
	10,000	to	10	150	300	
		1μF	15	80 ,	160	
Reset Propagation Delay Time,	5 to		5	225	450	1
T _{PHL} , T _{PLH}	10,000	≥15	10	125	250	ns
			15	75	150	
		1	5	100	200	ns
		15 1000	10	40	80	
			15	30	60	
Minimum Reset Pulse Width,			5	600	1200	
twR	100		10	300	600	
			15	250	500	
			5	25	50	
		0.1 μF	10	15	30	μs
			15	10	20	
Trigger Rise or Fall Time	_	_	5 to	_	100	μs
t _r (TR), t _f (TR)		and an	15		100	μs
Pulse Width Match		3	5	5	10	
Between Circuits in	10	10,000	10	7.5	15	%
Same Package			15	7.5	15	
Input Capacitance, CIN		Any Input		5	7.5	рF

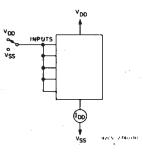


Fig. 12 – Quiescent-device-current test circuits.

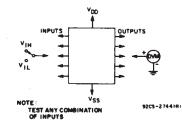
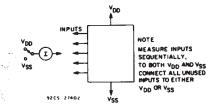
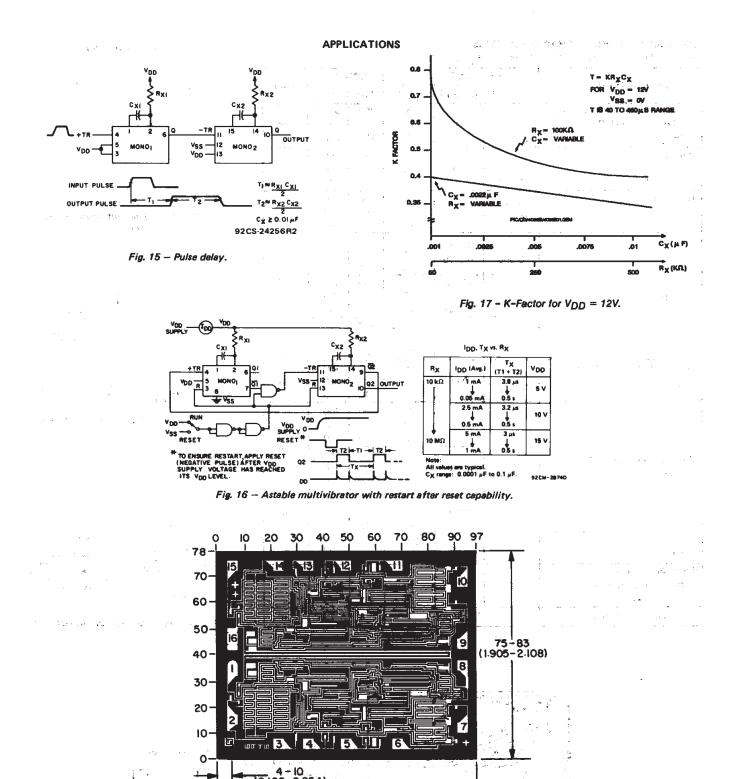



Fig. 13 - Input-voltage test circuit.



3

CD4098B Types

3-230

10102-0.254)94-102

994 1655

A. 813

.

(2.388-2.591)

Dimensions and Pad Layout for CD4098BH Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grief graduations are in mils (10⁻⁻³ inch).

- 92CS-35096

ŝ,

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.